Generalized Brownian functionals and the solution to a stochastic partial differential equation
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Taylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions
We study the Taylor expansion for the solution of a differential equation driven by a multi-dimensional Hölder path with exponent β > 1/2. We derive a convergence criterion that enables us to write the solution as an infinite sum of iterated integrals on a nonempty interval. We apply our deterministic results to stochastic differential equations driven by fractional Brownian motions with Hurst ...
متن کاملexistence and measurability of the solution of the stochastic differential equations driven by fractional brownian motion
متن کامل
numerical solution of heun equation via linear stochastic differential equation
in this paper, we intend to solve special kind of ordinary differential equations which is called heun equations, by converting to a corresponding stochastic differential equation(s.d.e.). so, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this s.d.e. is solved by numerically methods. mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1989
ISSN: 0022-1236
DOI: 10.1016/0022-1236(89)90098-0